Page 11 of 35 Supplement to original submittal to EPA for SIP change

Eli	Lilly	and	Company
Indi	anapol	is,	Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Review			Fingineer: Dr. T.P.Sinha			
	Gas stream frate,	flow G	=	109.85 lb/hr		Mwe * Gmol
	Abscissa,	ABS	=	0.058		$L/G * (D_g/D_1)^2$
	Ordinate,	ORD	=	0.14		Read from Figure 4.7-2
	Gas flow at flooding,		=	0.874 lb/h	[ORD	* Dg * Dl * Gc / ((a/e ³) * (Ul ^{0.2}))] ^{0.5}
	Gas flow,	Ga	=	0.524 lb/hr		f * Gaf
	Area of colu	amn, Acol	=	0.06 ft ²		G/(3,600 * Ga)
	Diameter of column		=	1.00 ft		1.13*Acol ^{0.5}
	# Gas trans. units,		=	2	Equat:	ion 4.7-13, HAP Manual
	Liquid flow rate,		=	2025 lb/hr-ft ²		L/Acol
	Ht of gas trunit,		=	3.048 ft	[b *	(3600 * Ga) ^c / (L" ^d] *Scg
	Ht of Liq trunit,		=	1.63 ft		Y * (L"/Ul") * * Scl 0.5
	Ht of transfunit,		=	4.07 ft		Hg + (1/AF) * Hl
	Column Heigh		=	8.1 ft		Nog * Hog
	Total column height,	-	=	10.4 ft		HT _{col} + 2 + 0.25 * D _{col}
	Volume of pa	7	_	6 4 ft ³		

Volume of packing material, Vpack = 6.4 ft^3

Page 12 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Pressure drop through column,

Pa

 $= 2.74 \text{ lb/ft}^2\text{-ft}$

Total pressure

drop, Ptot

= 4.28 in H_2O Pa * $HT_{col}/5.2$

CAPITAL COSTS DIRECT COSTS

Purchased equipment costs

Absorber Tower

Capital Cost, RCC = \$4,967 From Figure 4.7-4, corrected to

April, 1992 dollars

Auxiliary Equipment

Cost,

AEC

= \$99,500

Parameter

Packing material,

= \$86

Vpack * Pcost, corrected to April,

1992 dollars

Total Equipment

Cost, A

= \$ (RCC + AEC + PM)

= \$104,553

Instrumentation,

cost, I

= 0.10 * A

= \$10,455

Sales Taxes, S

= 0.05 A= \$5,228

Freight, F

= 0.05 * A

= \$5,228

Purchased

Equipment

Costs,

= \$ (A + I + S + F)

= \$ 125,464

Direct Installation Costs

Foundation and

= 0.012 B

Supports

= \$15,056

Page 13 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Handling and

Erection = 0.4 B= \$50,185

Electrical = 0.01 B

= \$1,255

Piping = 0.03 B

= \$37,639

Insulation for = 0.01 Bductwork = \$1,255

Painting = 0.01B= \$1,255

Direct

Installation = (Foundation and Supports + Handling and Costs, C Erection + Electrical + Piping +

Insulation + Painting) Costs

= \$106,644

Site

Preparation, D = \$0

Building Cost, E = \$0

TOTAL DIRECT

COSTS = \$(B + C + D + E)

= \$232,108

INDIRECT COSTS (INSTALLATION)

Engineering = 0.10 B

= \$12,546

Construction = 0.10 Band field expense = \$12,546

Contractor Fees = 0.10 B

= \$12,546

Start-Up = 0.01 B

= \$1,255

Page 14 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Performance Test = 0.01 B

= \$1,255

Contingencies

= 0.03 B

= \$3,764

TOTAL INDIRECT

COSTS

= (Engineering + Construction + Contractor Fees

+ Start-Up + Performance Test + Contingencies) costs

= \$ 43,912

TOTAL CAPITAL

= (TOTAL DIRECT COSTS

INVESTMENT (TCI)

+ TOTAL INDIRECT COSTS)

= \$(106,664 + 43,912)

= \$ 276,020

DIRECT ANNUAL COSTS

Actual emission

stream

flow rate, Qea

= 10 acfm

Annual electricity

requirement, Fp

= 20 kwh/yr

Annual electricity

cost, R_p

= \$1

Fp * U\$Elec

Annual solvent

requirement, Asr

= 36,293 gallons

Annual solvent

cost, ASC

= \$7

ASR * Pcw * 1/1000

Operating costs

(a) Operating labor

costs

= \$4,800

[(0.5 hr/shift)/(8 hr/shift)]

(HRS) (\$hourly rate)

(b) Supervisory

Costs

= \$720

0.15 *(Operating labor costs)

Operating costs

= \$(4,800 + 720)